| | 2000 | | | | 1 1 | | | |-----|------|---|---|---|-----|-----|-----| | USN | 1 | Ī | ĺ | 1 | | 1 | | | COL | - 1 | 1 | | 1 | | - 1 | f f | 06ES32 ## Third Semester B.E. Degree Examination, December 2010 **Analog Electronic Circuits** Time: 3 hrs. Max. Marks:100 Note: Answer any FIVE full questions, selecting atleast TWO Questions from each of Part - A and Part - B. PART - A What is an equivalent circuit of a device? Explain the different equivalent circuits for semiconductor diode. b. Analyse the circuit shown below, Fig. Q1(b), and draw the output waveform. Assume (08 Marks) c. Write a suitable circuit to get the following transfer characteristics fig. Q1(c), and explain its (05 Marks) Find I_{C_Q} and V_{CE_Q} for the circuit shown, Fig. Q2(a). b. Find the coordinates of the Q point and locate it on the dc load line for the voltage divider configuration. Given V_{CC} = 16V, R_1 (upper resistor) = 62 k Ω , R_2 = 9.1 k Ω , R_C = 3.9k Ω , $R_E=0.68k\Omega$ and $\beta=80.$ The coupling capacitors are $10\mu F$ each. Also find V_C , V_E and $V_B.$ c. Define turn ON time and turn OFF time of a transistor. Design a transistor inverter if $V_{CC} = 10V$, $I_{C_{sat}} = 10$ mA and $\beta = 250$. Assume input to be a pulse of amplitude 10V. (07 Marks) - 3 a. What is bias stabilization? Explain. Derive an expression for S(I_{CO}) and S(V_{BE}) for fixed bias configuration. - b. For an emitter bias circuit (capacitor is bypassed), determine r_e , Z_i , Z_o and A_v . Given $R_B=470~k\Omega$, $R_C=2.2k\Omega$, $V_{CC}=20V$, $R_E=0.56k\Omega$, $C_E=10\mu F$, $\beta=120$, $r_o=40k\Omega$, $C_C=10\mu F$. - c. Determine i) the common logarithm of the number 2.2×10^3 . ii) the power gain in decibels for $P_0 = 100$ m watts, $P_i = 5$ m watts. (04 Marks) - 4 a. The transistor is connected as a CE amplifier. Determine Z_c, Z_o, A_I and A_V using complete hybrid model. (10 Marks) - b. Discuss the low frequency and high frequency response of a RC coupled amplifier. (10 Marks) 5 a. For the circuit of fig. Q5(a), calculate the dc bias voltage V_E. (05 Marks) - b. With a block diagram, explain the difference between voltage series and voltage shunt feedback. (05 Marks) - c. Using the block diagram approach, derive an expression for A_f and Z_{of} for current series feedback amplifier. (10 Marks) - 6 a. With a neat circuit diagram, explain the operation of a transformer coupled class A power amplifier. (10 Marks) - b. For a class B amplifier with $V_{CC} = 25V$ driving an 8Ω load, determine i) maximum I/P power ii) maximum O/P power iii) maximum circuit efficiency. (06 Marks) - c. Calculate the second harmonic distortion for an O/P waveform having measured values of $V_{CE_{min}} = 2.4V$, $V_{CE_{Q}} = 10V$ and $V_{CE_{max}} = 20V$. (04 Marks) - 7 a. With a neat circuit diagram, explain the working principle of RC phase shift oscillator, with relevant equations. (10 Marks) - b. What are the tuned oscillators? Explain any one type of tuned oscillator. (10 Marks) - 8 a. Define g_m and r_d of field effect transistor. Explain the procedure to determine the above values graphically. (06 Marks) - b. Write the ac equivalent circuit for voltage divider JFET configuration and determine Z_i, Z_o and A_v. (10 Marks) - c. Differentiate between enhancement and depletion MOSFET. (04 Marks)